Skip to main content

Using QueryThreadCycleTime to access CPU execution timing

Comments

Popular posts from this blog

Hyper-V Architecture: Intercepts, interrupts and Hypercalls

Intercepts, interrupts and Hypercalls Three interfaces exist that allow for interaction and communication between the hypervisor, the Root partition and the guest partitions: intercepts, interrupts, and the direct Hypercall interface. These interfaces are necessary for the virtualization scheme to function properly, and their usage accounts for much of the overhead virtualization adds to the system. Hyper-V measures and reports on the rate these different interfaces are used, which is, of course, workload dependent. Frankly, the measurements that show the rate that the hypervisor processes interrupts and Hypercalls is seldom of interest outside the Microsoft developers working on Hyper-V performance itself. But these measurements do provide insight into the Hyper-V architecture and can help us understand how the performance of the applications running on guest machines is impacted due to virtualization. Figure 3 is a graph showing these three major sources of virtualization overhead...

High Resolution Clocks and Timers for Performance Measurement in Windows.

Within the discipline of software performance engineering (SPE), application response time monitoring refers to the capability of instrumenting application requests, transactions and other vital interaction scenarios in order to measure their response times. There is no single, more important performance measurement than application response time, especially in the degree which the consistency and length of application response time events reflect the user experience and relate to customer satisfaction. All the esoteric measurements of hardware utilization that Perfmon revels in pale by comparison. Of course, performance engineers usually still want to be able to break down application response time into its component parts, one of which is CPU usage. Other than the Concurrency Visualizer that is packaged with the Visual Studio Profiler that was discussed  in the previous post , there are few professional-grade, application response time monitoring and profi...

Memory Ballooning in Hyper-V

The previous post in this series discussed the various Hyper-V Dynamic Memory configuration options. Ballooning Removing memory from a guest machine while it is running is a bit more complicated than adding memory to it, which makes use of a hardware interface that the Windows OS supports. One factor that makes removing memory from a guest machine difficult is that the Hyper-V hypervisor does not gather the kind of memory usage data that would enable it to select guest machine pages that are good candidates for removal. The hypervisor’s virtual memory capabilities are limited to maintaining the second level page tables needed to translate Guest Virtual addresses to valid machine memory addresses. Because the hypervisor does not maintain any memory usage information that could be used, for example, to identify which of a guest machine’s physical memory pages have been accessed recently, when Guest Physical memory needs to be removed from a partition, it uses ballooning, which transfe...