Skip to main content

Watson computer smoking hot at Jeopardy challenge

Well, the contest isn't over yet, but the outcome looks like a foregone conclusion. After two days, the Watson computer is poised to defeat the two human champions it is playing. The computer’s performance has been impressive, to say the least, and has left the human contestants looking dazed  and confused.
 And who wouldn’t be? The computer was both ruthless & relentless. (There I go, anthromorphising again.)  The two human champions were barely able to answer a question or two as Watson virtually ran the board in the 2nd day of the competition. Watson, which has to generate an answer in real-time, was so successful at beating the human contestants to the punch that it generated speculation about whether the computer had some kind of unfair time advantage from being fed the question electronically. As reported here (thanks, Phillip), according to IBM, Watson actually cedes a slight “reaction time” advantage to the human contestants. Given how successful Watson is in determining the correct answer so quickly, I think it would be more sporting to give the poor, deserving human players an even bigger head start. Hey, give us a break!
After day 1, the computer and one of the contestants were tied, and it looked as if things would get interesting. After Tuesday’s totally one-sided shellacking, though, commentators were reduced to wondering about the few missteps and obvious quirks that the computer did exhibit on occasion. See, for example: http://www.wired.com/epicenter/2011/02/watson-does-well-and-not/, which analyzes the prodigious strengths the program displayed, as well as describing its few weak spots.
I am afraid that the computer is so good at answering Trivia question that the contest isn’t turning into much of a drama. (It is turning into a great promo, though, for the IBM Watson Research lab.)
However, it remains a challenge of mythic proportions, which is very cool. Like John Henry, the steel-driving man vs. a steam-powered machine, or Charlie Chaplin trapped inside the assembly line in “Modern Times.” On Ray Kurzweil’s web site (he is the author of “The Singularity is Near”), I can almost hear the champagne glasses clinking.

Comments

Popular posts from this blog

Monitoring SQL Server: the OS Wait stats DMV

This is the 2nd post in a series on SQL Server performance monitoring, emphasizing the use of key Dynamic Management View. The series starts here : OS Waits  The consensus among SQL Server performance experts is that the best place to start looking for performance problems is the OS Wait stats from the sys.dm_os_wait_stats DMV. Whenever it is running, the SQL Server database Engine dispatches worker threads from a queue of ready tasks that it services in a round-robin fashion. (There is evidently some ordering of the queue based on priority –background tasks with lower priority that defer to foreground tasks with higher priority.) The engine records the specific wait reason for each task waiting for service in the queue and also accumulates the Wait Time (in milliseconds) for each Wait reason. These Waits and Wait Time statistics accumulate at the database level and reported via the sys.dm_os_wait_stats DMV. Issuing a Query like the following on one of my SQL Server test mac

High Resolution Clocks and Timers for Performance Measurement in Windows.

Within the discipline of software performance engineering (SPE), application response time monitoring refers to the capability of instrumenting application requests, transactions and other vital interaction scenarios in order to measure their response times. There is no single, more important performance measurement than application response time, especially in the degree which the consistency and length of application response time events reflect the user experience and relate to customer satisfaction. All the esoteric measurements of hardware utilization that Perfmon revels in pale by comparison. Of course, performance engineers usually still want to be able to break down application response time into its component parts, one of which is CPU usage. Other than the Concurrency Visualizer that is packaged with the Visual Studio Profiler that was discussed  in the previous post , there are few professional-grade, application response time monitoring and profiling tools that exploit

Memory Ballooning in Hyper-V

The previous post in this series discussed the various Hyper-V Dynamic Memory configuration options. Ballooning Removing memory from a guest machine while it is running is a bit more complicated than adding memory to it, which makes use of a hardware interface that the Windows OS supports. One factor that makes removing memory from a guest machine difficult is that the Hyper-V hypervisor does not gather the kind of memory usage data that would enable it to select guest machine pages that are good candidates for removal. The hypervisor’s virtual memory capabilities are limited to maintaining the second level page tables needed to translate Guest Virtual addresses to valid machine memory addresses. Because the hypervisor does not maintain any memory usage information that could be used, for example, to identify which of a guest machine’s physical memory pages have been accessed recently, when Guest Physical memory needs to be removed from a partition, it uses ballooning, which transfe